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Back Ground

·Deep learning technology has developed dramatically.
·Various kinds of applications:

·Image Recognition, natural language processing etc.

·To predict sequential data:
Recurrent neural networks

·Long-Short Term Memory (LSTM)
·Gated Recurrent Unit

·Those are carefully constructed so that the models can capture 
long-distance dependencies in principle.



Recurrent Neural Networks
Recurrent neural networks are empirically known to be useful
when next elements in time-series data are required to be predicted.
e.g.) sentence generation:



Recurrent Neural Networks

Weights are forced to be invariant with respect to time. 

e.g.) a time series (x0, x1, x2) is input to a RNN: 

The main difference from usual neural networks:

a function



Long Short-term Memory (LSTM) 

·LSTM is a kind of RNN designed to track long-term dependencies.
·It has a redundant hidden output which is called “the state vector”.



Motivation and Key Idea

·Disadvantage of LSTM:
·Long-distance dependencies are implicitly involved in 
somewhere in the network weights.

·Our motivation:
·Knowledge of formal languages and grammars: 

·Exploit them to improve neural networks. 

·Key Idea:
·SP-k languages proposed Heinz et. al describe certain kinds 
of long-distance dependencies.
·Combine the standard DNN structure using LSTM with SP-k.



Strictly Piecewise Languages 
·A subclass of regular languages.

·Capture certain kinds of long-term dependencies.
·L is SP iff there is a finite set S such that no w in L contains any string in 
S as a subsequence (so finitely many forbidden subsequences)

·Long-term dependency in phonotactic is known to be captured:
·e.g.: Sarcee language (one of the native american languages)

·[-anterior] sibilants like [∫ ] and [      ] regressively require [+anterior] 
sibilants like [s] and [z],  but not vice versa. *

* James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome, and Sean Wibel. On Languages Piecewise Testable in the Strict 
Sense. The Mathematics of Language, volume 6149 of Lecture Notes in Artifical Intelligence, pages 255-265. Springer, 2010.
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Strictly Piecewise-k (SP-k) 
SP-k language L can be represented by a list of
k-SP-DFAs, whose DFA product equals L

a,b,c

b,c

a

a,b,c

a,c

b

a,b

a

b

a,b

c

a,b,c

c

eg)SP-2: k-SP-DFAs : { M1, …, MK }

This representaton
can be exponentially 
smaller than the 
minimal DFA 
representation of L.

This representation 
can also be used to 
define distributions via 
co-emission.



E.g.: co-emission for SP-2

There are three 2-SD-DFAs:Alphabet :

q(k=1,i=3)

q(k=2,i=2)

q(k,i) : the state of
k-th DFA after fed 
the prefix 
whose length is i-1. q(k=2,i=3)



SP-k vector representation:

The SP-2 vector for prefix x:

The SP-3 vector (or tensor) for x:

Σ={a,b,c,d,e}  
prefix:  x = a d a c d   

The num of 1s:
SP-2:
SP-3:

e.g.



Preliminary Experiments

Two types of Input:
n-gram : 
adjacent n letters. 

SP-k :
long-term dependency.

Purpose:
Check whether the SP-k vector
can capture long-term
dependencies and is effective 
for the next-element prediction.



Result of Preliminary Experiments

·SP-2 + n-grams was better 
than MKN as well as n-grams.

·SP-k vectors was clearly 
effective to have better 
prediction.

Data: Brown corpus (1000 sentences).
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Basic model: Two-layered LSTM 

·The network predicts the next letter 
of the sequence (a(t+1)).

·Each input letter is converted to a 
real valued vector in the embed layer.

·The output is the probabilities of the 
next letters.

·Two-layered LSTM network. 
·Information of the prefix is kept 
through this layer. 

·Non-linear layer on top of it.



Basic model: details of the network 

·The number of LSTM layers were 
decided through experiments.

·Using single layer LSTM 
decrease the prediction score.
· Three layers did not improve the 
score so much, but worsen the 
computational cost. 

·The number of the dimension of 
each layer was also decided with 
experimental validation.

·Two sets of numbers of the 
dimension are compared.
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Strictly Piecewise Model

·We concatenate the output of the 
LSTM network and the SP-2 vector.

·SP-2 vector:
·Encode the prefix into the SP-2 
zero-one vector.
·Embed into a real-valued vector 
through a fully connected layer
· As an intermediate layer, use
another fully connected layer with a 
non-linear activation function.

·LSTM network:
·the same as in the basic model.  

Full Con. + ReL

a(t+1)

Softmax

encoding of SP2 

embed (Full Con)

prefix(t)

LSTM 
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Strictly Piecewise Model: details of the network

·For SP-2 vector,
·layers and
·the number of the dimension 
of each layer

was decided in similar ways.
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There may be better network 
structures.

As we discuss later, the SP-2 vector has
the positive impact for several problems. 

This suggest that there is room 
to improve both 
the performance and 
our understanding of RNNs. 



Alternately-taken Bigram Model

· We divide a sentence 
· ( a0 a1 a2 a3 … ) into:

·even bigrams 
·( a01 a23 … )
·and the odd bigrams 
·( a12 a34 … ).

·These three sequences are 
fed into the LSTMs separately.

·Note that bigram models are 
essentially stochastic versions 
of Strictly 2-Local formal 
languages.



Alternately-taken Bigram Model:
details of the network

·Although even and odd 
bigrams are fed into the LSTMs 
separately, the LSTMs 
themselves are required to 
have common weights.

· In this way, the number of 
samples for learning the 
weights is doubled.
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Implementation
·We used a python library for the deep learning called Chainer.

·Back propagation is done automatically like as other libraries such as 
TensorFlow , Theano and Torch etc. 

·Learning:
·the momentum stochastic gradient descent (SGD) with momentum 0.9.
·Step size: decreased from 0.1 to 0.001.
·Iterations: 45 epochs.
·Batch size: 32
·Dropout is applied to the penultimate layer. 

·Execution time
· for each problem, 10 min. -- several hours 

on a commodity machine with a high-end GPU.

·The source code is available at 
https://github.com/cshib/rnns_for_spice



Results of Experiments 
·The tables show the top-5 scores for each problem in the SPiCe challenge.

·Comparison proposed models to basic models:
· SP-2  model : for some problems, is significantly better, 

and for other proprems, has no significant difference.
·Bigram model : for some problems, is significantly better as well, 

but for other problems, is significantly worse.



Conclusion and Prospect
·For the SPiCe competition, we ran three different 
network structures with two sizes of vectors.

·Overall, the experiments shows that the SP-2 hybrid 
model was the best.

·We believe the narrow advantage of the SP-2 hybrid 
model is due to its explicit representation of long-term 
dependencies in terms of subsequences.

·Different types of formal languages may shed light 
on the different kinds of long-term dependencies that 
different types of RNNs can and cannot learn.


